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Enteroendocrine cells (EECs) in both invertebrates and vertebrates derive

from intestinal stem cells (ISCs) and are scattered along the digestive

tract, where they function in sensing various environmental stimuli and

subsequently secrete neurotransmitters or neuropeptides to regulate

diverse biological and physiological processes. To fulfill these functions,

EECs are specified into multiple subtypes that occupy specific gut

regions. With advances in single-cell technology, organoid culture experi-

mental systems, and CRISPR/Cas9-mediated genomic editing, rapid pro-

gress has been made toward characterization of EEC subtypes in

mammals. Additionally, studies of genetic model organisms—especially

Drosophila melanogaster—have also provided insights about the molecu-

lar processes underlying EEC specification from ISCs and about the

establishment of diverse EEC subtypes. In this review, we compare the

regulation of EEC specification and function in mammals and Droso-

phila, with a focus on EEC subtype characterization, on how internal

and external regulators mediate EEC subtype specification, and on how

EEC-mediated intra- and interorgan communications affect gastrointesti-

nal physiology and pathology.
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Introduction

The gastrointestinal (GI) tract serves as the main site

for food digestion and nutrient absorption in all meta-

zoans, with its luminal surface exposed to substances

including nutrients and sometimes pathogens or toxic

chemicals; the GI tract is also home to the gut micro-

biome and is therefore exposed to myriad products of

microbial metabolism [1,2]. Enteroendocrine cells

(EECs), which are scattered in the epithelium of the

GI tract, are thought to function as major sensors of

luminal content: EECs sense various substances and

accordingly secret different types of neuropeptides or

neurotransmitters that act either locally or remotely to

regulate diverse biological and physiological processes,

including appetite, food ingestion, food digestion, gut

motility, metabolism, and immune responses [3–7].
Similar to the absorptive enterocytes, EECs are also

derived from intestinal stem cells (ISCs) [8,9]. Despite

comprising fewer than 1% of total epithelium cells in

the mammalian intestine, the EEC population is highly

heterogeneous: Previous studies have identified more

than 10 subtypes from mammals and Drosophila. Dys-

function of EECs has been linked to various patholog-

ical disorders [10–12]. For instance, disrupted

glucagon-like peptide-1 (GLP-1) secretion by EECs is

associated with diabetes and obesity, while loss of

gastrin-expressing enteroendocrine G cells leads to

enhanced symmetric division of antral stem cells and

increased risk of gastric tumorigenesis [13–15].
Historically, gut epithelial sensor cells were first doc-

umented by Rudolph Heidenhain in 1870, and secretin

(SCT), the first gut hormone, was discovered in 1902

[16]. However, gut endocrinology developed slowly in

subsequent decades until the emergence of new tech-

nologies including transmission electron microscopy,

monoclonal antibodies for research, and solid-phase

peptide synthesis technology in the 1960s [17]. In the

following 20 years, more than 20 gut peptides were

identified in the mammalian system [18], and the

alphabet nomenclature for EECs—based on the ‘one

cell-one hormone’ doctrine/hypothesis—was proposed

at a scientific congress in 1977 and later widely imple-

mented [17]. However, this classification is becoming

inadequate as our understanding of EEC subtype

diversification and specification increases. Specifically,

single-cell RNA sequencing (scRNA-seq) studies have

supported a high-resolution understanding of EEC

heterogeneity, and it is now clear that each EEC sub-

type commonly secrets multiple peptide hormones [10–
12,19,20]. Evolved EEC classification system has been

proposed, which take account of species, anatomical

location and genes or protein signatures [5]. For

example, D cells in stomach are described as

GM
SST+PYY+IAPP+CCK+GAST� cells with this new classi-

fication. However, such nomenclature is difficult to be

widely used and needs further optimization.

In addition, CRISPR/Cas9-mediated genomic edit-

ing combined with in vitro culture of intestinal orga-

noids has enabled sophisticated batch testing of the

putative regulators of EEC specification and function,

and robust multi-omics methods including proteomics

and metabolomics continue to enable the identification

of more and more bioactive neuropeptides and mole-

cules that trigger EEC responses [10,21–24]. In this

review, we summarize recent progress in our collective

understanding of EEC cellular diversity, including

characterization of EEC subtypes, transcriptional regu-

lation of both cell fate specification and EEC sense-

and-respond functions, and known links with EEC

dysfunction-related pathological disorders.

Specification of EEC lineage from
ISCs

In the rapid-replenishing gastrointestinal epithelium,

EECs are continually produced by multipotent ISCs

[marked by Lgr5 in mammals, and Delta (Dl) in Dro-

sophila] [9,25]. Similar to the differentiation processes

leading to other mature cell types, specification of

EECs is coordinately modulated by both internal tran-

scription factors (TFs) and external niche signals.

EEC lineage specification in mice

In mammals, the initial fate determination between

absorptive enterocyte versus secretory lineages is con-

trolled by Notch signaling (Fig. 1A). High Notch

activity sustains strong expression of the bHLH type

TF hairy and enhancer of split 1 (Hes1), which pro-

motes an absorptive cell fate; both inhibiting Notch

activity in ISCs and depleting Hes1 from ISCs can

induce cell cycle arrest and secretory cell fate commit-

ment [26–30].
Atoh1 is another bHLH TF that is believed to func-

tion as the pan-regulator of secretory cell lineage speci-

fication: Atoh1 depletion leads to loss of three

secretory cell types from the epithelium: goblet cells,

Paneth cells, and EECs [31]. Following the activation

of Atoh1, distinct secretory cell lineage specifiers are

subsequently activated, mediating further specification

of the three secretory cell types (Fig. 1A). The HMG

box TF Sox9, which functions downstream of Wnt

signaling, is required for Paneth cell differentiation,

and Paneth cell maturation also requires Wnt path-

way activation [32,33]. Specification of goblet cell

4774 The FEBS Journal 289 (2022) 4773–4796 ª 2021 Federation of European Biochemical Societies

Specification and function of enteroendocrine cells X. Guo et al.

 17424658, 2022, 16, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1111/febs.16067 by C

A
S-N

A
T

IO
N

A
L

 IN
ST

IT
U

T
E

 O
F B

IO
L

O
G

IC
A

 SC
IE

N
C

E
S, W

iley O
nline L

ibrary on [08/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



depends on the zinc finger TF growth factor indepen-

dent protein 1 (Gfi1), which is induced by Atoh1, and

high mitogen-activated protein kinase (MAPK) sig-

naling activity [34,35]. Kruppel-like factor 4 (KLF4)

is another zinc finger TF that has region-specific func-

tion in goblet cell specification: Its depletion leads to

loss of more than 90% of this cell type in the colon,

while the small intestine is not significantly affected

[36]. As for EECs, the bHLH family TF neurogenin 3

(Ngn3) is specifically expressed in EEC progenitors

and promotes EEC specification; the Ngn3 level is

reduced gradually as these progenitor cells differenti-

ate into mature, hormone-expressing EECs [12,37].

Gfi1, which is enriched in goblet and Paneth cells,

suppresses the expression of Ngn3, thereby prevents

fate conversion of the goblet and Paneth cells into

EEC fate [34,38]. Interestingly, Sox4, a high-mobility

group (HMG) protein that is expressed in cells close

to the +4 position of intestinal crypts, functions in

the early stages of EEC differentiation and con-

tributes to the specification toward Tuft cell and EEC

fates only [12,39].

In addition to in vivo genetic models, in vitro enter-

oid cultures and directed differentiation experiments

have also highlighted the functional impacts of niche

signals in modulating fate commitment of distinct

secretory lineages (Fig. 1A). Simultaneous Notch sup-

pression and Wnt activation lead to specification of
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Fig. 1. Regulation of EEC lineage specification from ISCs in mammals and Drosophila. (A) Schematic overview of EEC lineage specification

in the mammalian intestine. The binary fate choice between the secretory and absorptive lineages from Lgr5+ cells is controlled by Notch

signaling, and the transcription factor Atoh1/Math1 is required for differentiation of progenitor for the entire secretory lineages. Transient

expression of Ngn3 specifically directs specification of EEC progenitor cells, while Sox9 and Klf4 direct Paneth and Goblet cell specification,

respectively. Gfi1 is expressed in Paneth and Goblet cells, preventing their conversion into EEC lineage. (B) Schematic overview of EEC

lineage specification in Drosophila midgut. Dl+ ISCs give rise to two types of lineage-committed progenitor cells: the secretory EEP and

absorptive EB cells. The transient expression of the bHLH family TF sc triggers the specification of EEPs, and Pros promotes EEC fate

commitment and maturation. Notch activation-induced E(spl) factors promote EB differentiation, which is further differentiated into

absorptive enterocytes. Other TFs including Ttk and Klu also carry out suppressive functions on EEC specification.
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Paneth cells, whereas dual inhibition of both Notch

signaling and Wnt signaling promotes robust specifica-

tion of goblet cells. EEC lineage specification requires

inactivation Notch and Wnt as well as repression of

EGFR signaling [40,41]. Thus, extensive co-operation

of internal TFs and niche signals determines proper

specification of secretory lineages in the intestinal

epithelium.

Using time-resolved lineage labeling combined with

single-cell gene expression analysis, a recent study

reveals that cell cycle exit of ISCs induced by a switch

from canonical Wnt/b-catenin to noncanonical Wnt/

PCP signaling represents the earliest step of Paneth cell

and EEC lineage priming from ISCs, prior to Notch/

Delta-mediated lateral inhibition [42]. Additionally,

this study also argues against the existence of bi- or

multipotent secretory progenitors and suggests that

EECs and Paneth cells are directly allocated from ISCs

via unipotent transition states [42–44]. Therefore, the

exact cell lineage relationships based on which the four

different types of secretory cells are generated from

ISCs are still not fully clarified and require further

investigation.

EEC lineage specification in Drosophila

In Drosophila, Notch signaling also controls the binary

fate choice between absorptive enterocyte versus secre-

tory EECs (Fig. 1B). ISCs specifically express the

Notch ligand Dl, which induces Notch activation of

their immediate daughter progenitor cells to adopt an

absorptive fate [8,45–47]. The generation of EEC pro-

genitors from ISCs requires a transient activation of

the bHLH family gene scute (sc), which induces asym-

metric cell division to generate a new EE progenitor

cell (EEP), and each EEP typically undergoes one

round of cell division before the terminal differentia-

tion which yields a pair of EECs [48]. This transient

activation of sc in ISCs is achieved by a self-

stimulatory transcription activation loop combined

with a negative feedback loop between Sc and the

Enhancer of split (E(spl)) factors (Fig. 1B). Therefore,

it appears that sc is expressed in an oscillatory pattern

in ISCs, possibly defining a clock-like mechanism

through which ISCs periodically generate EECs; note

that ISCs spend most of their time (> 70%) in a

default mode that generates enterocytes [48].

A series of additional internal factors also partici-

pated in the regulation of sc expression (Fig. 1B). The

C2H2 zinc finger family TF Klumpfuss (Klu) is

induced in Notch-activated enteroblasts and guaran-

tees enterocyte lineage commitment by suppressing sc

expression [47]. In ISCs, a BTB domain-containing TF

Tramtrack (Ttk, or Ttk69) maintains the intestinal

epithelial identity of ISC and suppresses the proneural

genes sc and asense (ase); ttk depletion leads to ectopic

gain of neuroblast-specific transcription programs and

production of excess EECs [49,50]. An adaptor protein

Phyllpod (Phyl), which bridges Ttk to the E3 ligase

Sina for proteolytic degradation, is transiently

expressed in the EEC progenitor stage, which may

function to support sustained Sc activation for EEC

fate commitment, as loss of phyl causes failed EEC

generation from ISCs [51,52].

Prospero (Pros), a homeobox family TF orthologous

to mammalian Prox1, is induced by Sc and drives

EEC fate commitment and maturation (Fig. 1B) [48].

Similar to its roles in the nervous system, Pros sup-

presses cell cycle and progenitor identity-related genes

and activates EEC-specific genes, such as peptide hor-

mones [49,53]. Immediately prior to the generation of

a daughter EEP cell, Pros appears to be weakly

expressed in ISCs, but it is sequestered in the cyto-

plasm and/or on the cell membrane. At the EEP stage,

Pros starts to accumulate and initially appears in the

form of punctate dots in the nucleus; it is soon richly

present throughout the entire nucleus of differentiating

and mature EECs [48]. In neural precursor cells (NP

cell, also GMC), Pros also forms a similar punctate

pattern in complex with HP1 via liquid–liquid phase

separation (LLPS), and such structure is required for

heterochromatin formation and terminal fate commit-

ment [54]. Whether Pros mediates suppression of pro-

genitor identity and/or activates the expression of

EEC-identity-related genes and whether such functions

are facilitated by these punctate structures remain

unknown.

Specification of EECs from ISCs in the Drosophila

midgut has also been reported to be regulated by

external mechanical signals and Slit/Robo signaling.

The stretch-activated Piezo channel, which is expressed

in a subset of ISCs, is activated by mechanical stresses

following gut filling to increase cytosolic Ca2+ signaling

and promote EEC specification [55]. The differentiated

EECs are believed to exert a negative feedback mecha-

nism on EEC generation from ISCs. EECs specifically

express Slit, which then binds to its receptor Robo2

expressed in ISCs and suppresses ISC commitment

toward the EEC lineage [56]. However, genetic manip-

ulations that allow clonal depletion/accumulation of

EECs or clonal depletion/overexpression of Slit in the

intestinal epithelium fail to cause a significant effect on

the distribution pattern and density of EECs in the

epithelial regions surrounding the clones [57]. These
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observations indicate that a systematic rather than

local feedback mechanism via Slit/Robo2 signaling

might be involved in EEC generation from ISCs.

Characterization of the heterogeneous
EEC population

The particular functions of each EEC subtype are

apparently determined by the specific complements of

peptide hormones that each can secret in response to

sensing of discrete messages. Numerous organelles

belonging to the endolysosomal system (including early

endosomes, late endosomes/multivesicular bodies, recy-

cling endosomes, and lysosomes) and secretory system

(including endoplasmic reticulum, Golgi, secretory gran-

ules, lipid droplets, and chylomicrons) exist in EECs to

ensure that they are able to effectively synthesize and

secrete peptide hormones with signaling capabilities

[58]. Collectively, there are at least 20 peptide hormones

that are expressed in all EECs of either mammals or

Drosophila, and their expression patterns exhibit local

and regional variations along the GI tract, highlighting

substantial heterogeneity (Fig. 2A,B). Thus, a clear clas-

sification and characterization of EEC subtypes are

important for further investigation of their biological

functions. However, contrast to the characterization of

EEC subtypes along the whole gut in Drosophila [11],

studies of spatial patterning of EEC subtypes in mam-

mals are far from adequate, hindered by the large size

of the GI tract, and using organoids derived from dif-

ferent segments of the gut cannot completely simulate

the situations of EECs in vivo [10,12,19,20]. Therefore,

more studies and new technologies are needed to sup-

port more informative in vivo characterization of mam-

malian EEC subtypes and elucidate their sensing and

hormone-secreting functions.

EEC subtypes in the mammalian GI tract

As mentioned earlier, EECs in mice and humans have

been historically classified by a letter code according

to the specific hormone they secrete or based on ultra-

structural features identified with electron microscopy.

For instance, M cells were named based on their secre-

tion of motilin, while L cells were named for contain-

ing large vesicles [59]. By using this nomenclature, at

least 12 EEC subtypes have been identified, including

D cells, enterochromaffin (EC) cells, enterochromaffin-

like (ECL) cells, G cells, I cells, K cells, L cells, M

cells (‘EC2’ or ‘MO’ cells), N cells, S cells, and X/A

cells (P/D1 cells in human); these cells collectively

secret more than 20 types of mature peptide hormones.

We have summarized the expression patterns of

peptide hormones and their chemosensors/receptors, as

well as the spatial distribution and functions of distinct

EEC subtypes, in Fig. 2A and Table 1. The spatial

location of each EEC subtype is frequently reflective

of regional adaptability to biological functions. For

example, G and X/A cells are located in the stomach,

where they secret gastrin and ghrelin, which regulate

the secretion of gastric acid from enterocytes [60–62].
I, K, and L cells are enriched in the small intestine,

the main region for food digestion and absorption,

where they separately secret CCK, GIP, and PYY/

GLP-1 to synergistically regulate gut motility, glucose

homeostasis, and appetite [63,64]. In addition to the

regional features along the length of the GI, EEC sub-

types are also spatially segregated along the crypt–vil-
lus axis [12,65]. For example, L cells and Tac1-

expressing enterochromaffin cells are found in the

crypt, while I cells, N cells, and Sct-expressing ente-

rochromaffin cells reside at various domains along the

length of the villus.

It is noteworthy that the hormone production by

EECs can be further diversified by prohormone orga-

nization and regulation, which can be achieved

through alternative promoters, tissue-specific RNA

splicing, cell-specific prohormone processing, and post-

translational modifications [4,5,18,66]. One well-

characterized example is the process of proglucagon-

derived peptides. The glucagon (GCG) gene encodes a

180 amino acid preprohormone with a 20 amino acid

N terminal signaling peptide. In pancreatic alpha cells,

prohormone convertase 2 (PC2)-mediated posttransla-

tional processing cleaves proglucagon into glucagon,

glicentin-related pancreatic peptide, and major proglu-

cagon fragment [67–70], while in intestinal L cells, the

proglucagon is cleaved by PC1/3 into GLP-1, GLP-2,

glicentin, and OXM [67,68,70]. Therefore, the expres-

sion of a hormone-related gene may not precisely rep-

resent the production of one specific hormone. The

shared epitopes and sequence homology among differ-

ent hormones, processed from the same proprotein,

should be treated carefully when detecting these hor-

mones at protein level.

Morphologically, most EECs in mammals have a

teardrop shape, with a broad basolateral base and a

narrow apical surface. Many ‘open type’ EECs have

microvilli at their apical surface, and these structures

increase their surface area exposed to luminal content.

So-called ‘close type’ EECs, including some D, ente-

rochromaffin, ECL, and X/A cells [3], are embedded

in the epithelium and are regulated by receptors at

their basolateral surface that are responsive to neu-

roendocrine or circulating factors. I and K cells can

form a basal cytoplasmic protrusion termed a
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neuropod, which extends to the enteric nervous system

[71,72]. Collectively, these structures and secreted pep-

tide hormones enable EECs to carry out local or

remote regulatory functions (Fig. 3).

EEC subtypes in the Drosophila intestine

ScRNA-seq analysis of Drosophila intestinal cells

revealed that Golgi-associated vesicle biogenesis genes

were enriched in EECs, consistent with their secretory

role [73]. The EECs in Drosophila were previously

divided into two major categories: the allatostatin C

(AstC)-expressing class I cells and tachykinin (Tk)-

expressing class II cells [74]. Guo et al. recently

reported high-resolution mapping of EEC heterogene-

ity and classified EECs in the Drosophila midgut into

10 subtypes based on single-cell RNA sequencing anal-

ysis. These EECs collectively express genes encoding at

least 14 different peptide hormones, including allato-

statin A (AstA), AstC, Tk, neuropeptide F (NPF),

short neuropeptide F (sNPF), diuretic hormone 31

(DH31), CCHamide-1 (CCHa1), CCHamide-2

(CCHa2), myoinhibitory peptide (Mip), myoinhibitory

peptide (Nplp2), glycoprotein hormone beta 5 (Gpb5),

ion transport peptide (ITP), crustacean cardioactive

peptide (CCAP), and orcokinin [11]. Bursicon (Burs) is

also reported to be expressed in some EEs in the pos-

terior midgut after starvation [75,76], although it is

not detected by in situ hybridization and scRNA-seq

under normal conditions [11,75]. Table 2 summarizes

the spatial distribution of Drosophila EEC subtypes

and presents related information for both hormone

expression and receptor expression.

Similar to mammals, each EEC subtype in Droso-

phila expresses 2–5 peptide hormone genes, yielding at

least 2–5 peptide hormones. Most of these 10 midgut

EEC subtypes are AstC+ class I or Tk+ class II cells

[11]. Subtypes expressing NPF, DH31, and Nplp2

belong to Tk+ class II EECs, while the AstC+ class I

subtype EECs express AstA, CCHa2, or orcokinin.

There is a third ‘TK�, AstC�’ EEC class located in

the anterior region of the intestine; these cells express

CCHa2 and orcokinin [11]. The adult Drosophila mid-

gut can be subdivided into six major anatomical

regions along the anterior/posterior (A/P) axis: R0–R2

(anterior midgut), R3 (middle midgut, copper cell

region), and R4–R5 (posterior midgut) [77]. Based on

the expression profiles and experiments with in vivo

genetic reporter lines, the spatial distribution of the

EEC subtypes along the midgut has been characterized

(Fig. 2B). The distribution of many EEC subtypes is

well associated with their predicted biological func-

tions: For example, the peptide hormone ITP that reg-

ulates ion transport is mainly expressed in the II-p

EEC subtype, which is distributed at the most poste-

rior region of the midgut, proximal to the hindgut

region where ions and water are reabsorbed [78]. In

addition to hormone peptides, different EEC subtypes

also express many G protein-coupled receptors

(GPCRs) that can respond to these hormones.

Stomach

Duodenum

Jejunum

Ileum

Colon
Rectum

5-HT, CCK, GIP, GLP-1,
GLP-2, INSL5, motilin, 
NTS, SCT 

5-HT, GLP-1, GLP-2, 
INSL5,NTS

SST,5-HT,CCK, GIP,
motilin, SCT, ghrelin

SST, 5-HT, histamine,
gastrin, ghrelin

5-HT, GLP-1, GLP-2, 
INSL5,NTS

R1

R2

R3

R4

R5

Tk, AstC, Orcokinin, sNPF, CCHa2,
NPF, CCHa1, DH31

Tk, AstC, Orcokinin, NPF, Mip,Nplp2

Tk, AstC, CCHa1, CCHa2, Mip, 
DH31, AstA, NPF

Tk, AstC, CCHa1, DH31, AstA, NPF

A B

Fig. 2. Distribution of peptide hormones

along the GI tract in mammals (mice or

humans) (A) and Drosophila (B).
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Table 1. Mammalian EEC subtypes, expressed receptors, peptide hormones, and biological functions.

Subtype name

Regional

distribution Receptors expressed [1,112]

Peptide

hormones

expressed Function

D cell Stomach

and

duodenum

CaSR, GPRC6A, LPA5R; FFAR4 Somatostatin

(SST)

Inhibit gastrin release [163,164]

Enterochromaffin

cell

Entire GI

tract

FFAR2–3; TRPA1; toxin receptors;

TLRs

Serotonin (5-HT) Gut motility [165], nausea, visceral

hypersensitivity [7], platelet aggregation [166],

bone density [167], liver regeneration [168],

inflammation [169], permeability of the blood–

brain barrier (BBB) [160], lipolysis [102],

hematopoietic stem/progenitor cell proliferation

[170]

Tachykinin 1

(Tac1,

substance P)

Unknown in EECs

Enterochromaffin-

like cell (ECL

cell)

Stomach Closed cells Histamine Increase gastric acid [163]

G cell Stomach CaSR, GPRC6A, LPA5R; FFAR3;

TRPA1

Gastrin Stimulate acid secretion [62]

I cell Upper

small

intestine

CaSR, T1R1-T1R3; FFAR1, FFAR3,

FFAR4; TRPA1, TLRs

Cholecystokinin

(CCK)

Promote digestion, promote nutrient absorption,

cease food intake, delay gastric emptying and

motility [63,64], increase satiety [112]

K cell Duodenum

and upper

Jejunum

GPR119, FFAR1 Gastric

inhibitory

peptide (GIP)

Stimulate insulin secretion [116,117], promote

lipid uptake and storage [113]

L cell Jejunum,

ileum, and

colon

T1R2-T1R3, SGLT1, KATP channels;

GPRC6A, T1R1-T1R3; FFAR1–4,

GPR119; TRPA1, TLRs, GBAR1

Peptide YY

(PYY)

Digestion, nutrient absorption, food intake

[63,64], increase satiety [111], maintain fluid

homeostasis [171]

Glucagon-like

peptide-1

(GLP-1)

Digestion, nutrient absorption, food intake

[63,64], bile acids metabolism [114], satiety, gut

motility [111,112], insulin, and glucagon

secretion [172]

Glucagon-like

peptide-2

(GLP-2)

Adaptation and recovery of intestinal mucosa in

response to injury [4], growth of small intestine

[173,174]

Oxyntomodulin

(OXM)

Body weight homeostasis [4]

Insulin-like

peptide 5

(INSL5)

Promote food intake, glucose production [91]

M cell (EC2 or

MO cell)

Duodenum

and

jejunum

Bile receptors Motilin Increase gastrointestinal motility, increase

appetite [175,176]

N cell Jejunum,

ileum, and

colon

FFARs Neurotensin

(NTS)

Slow gastrointestinal motility [177], regulate

insulin secretion [178]

S cell Duodenum

and

jejunum

Acid receptor Secretin (SCT) Slow gastrointestinal motility, reduction of

gastric acid [179], decrease appetite [115]

X/A cell (P/D1 cell

in human)

Stomach

and

duodenum

SGLT1, KATP channels

CaSR, GPRC6A, T1R1-T1R3

FFAR2, FFAR4

Ghrelin Increase appetite [180], fat storage [112], inhibit

insulin release, increase gastrointestinal motility,

increase gastric acid [60,61]
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However, the expression of many peptide hormones

and their corresponding receptors are (in general)

mutually exclusive in each EEC subtype [11]. For

example, NPF is expressed in Tk+ class II EECs, while

its receptor NPFR is expressed in AstC+ class I EECs

[11]. This suggests the potential for cell-to-cell commu-

nications among different EEC subtypes.

Internal and external regulations of
EEC heterogeneity

Apart from the general EEC lineage differentiation

program from ISCs, a set of TFs have been identified

to regulate the specification of EEC subtypes in both

Drosophila and mammals. Notably, studies in Droso-

phila have revealed that in addition to its early roles

during cell fate specification of ISCs, Notch signaling

also continuously participates in specifying a subset of

EEC subtypes, and the regional definition of many

EEC subtypes can be attributed to the A/P body pat-

terning that occurs during early embryonic develop-

ment [11,74]. Studies in mammals have revealed a role

for a ‘morphogen gradient’ along the crypt–villus axis

in orchestrating different hormone production and

secretion programs from EECs [65]. Generally, it is

becoming clear that external factors including niche

signals, nutrients, as well as gut microbiota and the

metabolites they produce can impact EEC generation

and EEC subtype specification. However, how these

external factors and internal transcriptional network

are connected to regulate EEC specification and func-

tion is still not well-understood.

Transcriptional regulation of EEC diversity in

mammals

After their specification, Ngn3+ EEC progenitors are

further specified into two main branches: the 5-HT-

Lumen

Epithelium

(myenteric and 
submucosal plexus)

Enteric neurons

EE EEEE EE

endocrine
paracrinesynapse

Fig. 3. Enteroendocrine cell morphology and modes of hormone action in the mammalian intestine. ‘Open type’ EECs with microvilli locate

at the apical surface and ‘close type’ EECs reside in villi of the gut epithelium. ‘Open type’ EECs sense contents in the gut lumen and

secret hormones to the circulatory system (red) or adjacent cells through an endocrine or a paracrine manner. Some EECs have basal

cytoplasmic process termed as neuropod, which can form synaptic connection with vagus nerves (orange) to directly connect to the

nervous system.

Table 2. EEC subtype characterization in Drosophila.

Subtype

name

Peptide

hormones Peptide receptors

Regional

distribution

I-a AstC, Orcokinin CG30340, CCHa1-R,

CG32547

R2a, R2b

III sNPF, CCHa2,

Orcokinin (low)

AstC-R2 R2a, R2b

I-ap-a AstC, Orcokinin,

CCHa1

CG13575, CG32547,

TrissinR

R2

II-a Tk, NPF, DH31

(part of), CCHa1

(part of)

Pdfr R2

I-m AstC, Orcokinin NPFR, CCHa1-R,

CCKLR-17D3,

CG12290, CG30340

R3

II-m1 Tk, NPF, Mip

(part of), Nplp2

(part of)

AstA-R2, AstC-R2,

DH44-R2, Pdfr

R3

II-m2 Tk, NPF, Mip

(part of), Nplp2

(part of)

AstA-R2, DH44-R2 R3

I-ap-p AstC, CCHa1,

CCHa2, Mip

CG13575, CG32547,

TrissinR

R4

I-pCCHa1 AstC, CCHa1 AstC-R2, NPFR,

CG13229, CG13575

R4, R5

I-pAstA AstC, AstA,

CCHa1

CG13229, CG13575,

CG32547, ETHR,

TrissinR

R4c, R5

II-p Tk, CCHa1,

DH31, NPF (part

of)

AstA-R2 R4c, R5
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producing enterochromaffin cells and other peptide

hormone-producing ‘non-enterochromaffin cell trajec-

tory’ cells including D, I, K, L, and X/A cells

(Fig. 4A) [12]. Specification of the enterochromaffin

cell lineage requires the paired homeobox TF paired

box 4 (Pax4), and a recent study has also revealed the

involvement of additional TFs including Tox3 and

myelin transcription factor 1 (Myt1) during this pro-

cess by combining scRNA-seq analysis and organoid-

based genetic validation [12,79]. These factors are tran-

siently expressed during enterochromaffin cell specifi-

cation and maturation (Fig. 4A), and their depletion

leads to significantly compromised enterochromaffin

cell specification and compromised 5-HT production.

Additionally, the LIM homeobox TF Lmx1a is

expressed in both early and mature enterochromaffin

cells (Fig. 4A), and work with intestinal organoids has

shown that it is required for 5-HT biosynthesis and

enterochromaffin cell specification both in mouse and

human GI tracts [10,12,80].

As for specification of most EEC subtypes within the

non-enterochromaffin cell secretory trajectory, the

paired-like homeobox TF Arx has been shown as a crit-

ical regulator, as its loss leads to depletion of CCK,

SCT, GIP, GLP-1, PYY, and NTS producing cells [79].

However, the SST-expressing D cells are apparently a

unique subtype in the non-enterochromaffin cell secre-

tory trajectory, as the proportion of these cells is

increased in arx mutant mice, whereas pax4 depletion

impairs its differentiation and upregulates L cell genera-

tion, exhibiting an antagonistic regulatory impact on

these two distinct subtypes. The D cell-specific TF

hematopoietically expressed homeobox (HHEX) may

also contribute to the allocation of EEC progenitors

into this lineage [12,79,81].

Among other subtypes within the non-

enterochromaffin cell secretory trajectory, neuronal

differentiation 1 (NeuroD1) regulates specification of

SCT-producing S cells and CCK-producing I cells,

while the winged helix factors forkhead box A1/2

(FOXA 1/2) function in specifying GLP-1+ L cells

[82,83]. In mature X/A cells, Zcchc12 is highly

expressed, and its depletion also leads to suppression

of ghrelin expression and X/A cell loss [12]. Possibly

due to the different research systems used, there are

apparently conflicting reports about the function of

the transcriptional regulatory factor regulatory factor

X6 (Rfx6): Using an in vitro organoid system, Gehart

et al. [12] showed the dependence of Rfx6 for the spec-

ification of both enterochromaffin cells and non-

enterochromaffin cell lineages, whereas Piccand et al.

[84] showed that Rfx6 promotes Arx, Pax6, and Isl1

expression to trigger the differentiation of peptidergic

non-enterochromaffin cell lineages and blocks 5-HT

biosynthesis in enterochromaffin cells by repressing

Lmx1a and Tryptophan hydroxylase 1 (Tph1) expres-

sion.

Transcriptional regulation of EEC diversity in

Drosophila

Based on scRNA-seq analysis combined with in vivo

functional analysis, Guo et al. [11] have identified a

number of TFs involved in EEC subtype specification

in adult Drosophila midgut (Fig. 4B). Among them,

the Irx family mirror (Mirr) and the paired-like

homeobox factor Ptx1 control specification of Tk+

class II and AstC+ class I EECs, respectively [11]. In

addition, Mirr is also required for the expression of

all other class II EEC-specific peptide hormones

tested (DH31 and NPF), indicating that Mirr is

essential for the specification of class II EECs [11].

The C2H2 zinc finger TF Klu also carried out a sup-

pressive role on class I/II EEC specification: Its

depletion leads to a biased specification of EECs

toward AstA+ class I fate [73].

Transcription factors whose expression is highly

corelated with the expression patterns of peptide hor-

mones in the EEC scRNA-seq analysis commonly

show regulatory roles on transcription of related pep-

tide hormones. Specifically, NK7.1, 48 related 1

(Fer1), and dachshund (Dac) are co-expressed with the

expression of Tk, CCHa1/CCHa2, and orcokinin,

respectively, and depletion of these TFs individually

leads to specific downregulation of the corresponding

peptide hormone; the expression of nlp is inversely

corelated AstA, and its knock-down indeed causes

upregulation of AstA expression in the gut [11]. Thus,

examining TFs enriched in certain EEC subtypes or

highly corelated to certain peptide hormone would be

a promising approach for identification of novel regu-

lators on EEC subtype specification.

Transcription factors with region-restricted expres-

sion commonly participate in regulating the regional

identity of EEC subtypes along the Drosophila midgut.

For example, Esg and Ptx1 are enriched in EECs in

the R3 region and are required for transcription of

NPF and Orcokinin in R3. Similarly, the odd-skipped

family TF drumstick (Drm) is required for the expres-

sion of the peptide hormone ITP, and both Drm and

ITP are enriched in the posterior end of the midgut

[11,77,85]. Given that Hox genes are known to control

segmentation during early embryonic development, it

is tempting to speculate that these regionally expressed

TFs are established during A/P body patterning during
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early development; this could help explain their capac-

ity in later regulating the regional identities of EEC

subtypes. The EEC subtypes found in adult Drosophila

midgut have been summarized in Table 2.

External signals modulate EEC plasticity and

adaptability

In addition to internal regulators, the continually

changing environment of the GI tract can also exert

A

EEC
progenitor

EC cell

D cell

N cell
I cell

L cell

X cell

K cellMyt1Runx1Tox3ArxNeuroD1Rfx6 FOXA 1/2

Zcchc12

progenitor
Non-EC

P
ax4, A

rx

Pax4
, Lmx1

B

(non-ECs)

Ngn3+

Neurog3

Tk+

AstC+

Class I

CCHa2
+

Class II

II-a

II-m1

II-m2

II-p

I-a

I-ap-a

I-m

I-ap-p

I-pCCHa1

I-pAstA

CCHa2-

CCHa2+

Notch

Class III

Ptx1

Mirr

EEP

Dl+ Pros+

M
am

o, Sug, Fer1 

Mamo, E
xex, D

ac

Fer1, Sug, Nlp

Mamo,Fer1

Mamo, Exex, Dac
NlpDrm, Fer1, Nlp

Esg, Ptx1, NK7.1Esg, Ptx1, NK7.1Drm, NK7.1, Nlp

Scute

Pros

ISC EEP mature EECs

progenitor
EC

Pax4

Lmx1a

Arx

Lineage-committed
progenitor mature EECsEEC

progenitorISC

(EC)

(EC)

BMP

BMP

Fig. 4. The TF expression dynamics that lead to EEC subtype specification. (A) Schematic overview of TFs involved in EEC subtype

specification in the mammalian intestine. EC progenitor: enterochromaffin cell progenitor; EC cell: enterochromaffin cell; Non-EC progenitor:

non-enterochromaffin cell progenitor. Upper panel: Ngn3+ EEC progenitor cells give rise to two major branches: via Pax4 and Lmx1 to

promote differentiation and maturation of 5-HT-producing enterochromaffin cell; via Arx together with other TFs including NeuroD1, Rfx6,

Runx1, and Tox3 to direct differentiation of non-enterochromaffin cell lineages. Note that D cell specification is suppressed by Arx and

requires Pax4. For specific EEC subtypes, Zcchc12 is required for X/A cell specification, while FOXA1/2 is required for L cell specification.

The BMP signaling gradient along the crypt–villus axis is able to reprogram GLP-1-producing L cell into I cell and finally N cell as the cell

migrating from crypt to the villus tip. Bottom panel: expression dynamics for a few selected TFs: Neurog3 is enriched in EEC progenitors

and decreased during further differentiation and maturation; Pax4 and Lmx1a are enriched in enterochromaffin cell committed lineages,

Pax4 transiently expressed in enterochromaffin cell biased progenitors, and Lmx1a is gradually increased during EEC maturation. Arx is

specifically enriched in non-enterochromaffin cell biased progenitors and downregulated during maturation. (B) Schematic overview of

transcription factors that regulate EEC subtype specification in Drosophila. Upper panel: a hierarchy of TFs specifies EEP into distinct

mature EEC subtypes. Among them, Mirr is required for specification of class II Tk+ EECs, while Ptx1 is required for AstC+ Class I EECs.

Bottom panel: expression dynamics for Sc and Pros: Sc is transiently expressed in ISCs to induce EEP generation and is rapidly diminished

as EEP undergoes further differentiation and maturation; Pros, which is initially induced by Sc, is gradually accumulated as EEC

differentiates and matures.

4782 The FEBS Journal 289 (2022) 4773–4796 ª 2021 Federation of European Biochemical Societies

Specification and function of enteroendocrine cells X. Guo et al.

 17424658, 2022, 16, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1111/febs.16067 by C

A
S-N

A
T

IO
N

A
L

 IN
ST

IT
U

T
E

 O
F B

IO
L

O
G

IC
A

 SC
IE

N
C

E
S, W

iley O
nline L

ibrary on [08/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



profound effects on the generation of EEC diversity.

The different EEC subtypes that reside at different

regions along the crypt–villus axis of the mammalian

intestine are not necessarily derived from distinct lin-

eage progenitors. Lineage tracing experiments in mice

revealed reprogramming of hormone repertoires in dis-

tinct EEC lineages during EEC maturation and migra-

tion along the crypt–villus axis, including decreased

GLP-1 production and upregulation of PYY level in L

cells, as well as increased SCT production in K cells

[65]. This hormonal switch leads to alternation of the

single-letter characterization of EEC subtypes, for

example, a single GLP-1 producing L cell in the crypt

can change into I cell and finally N cell during its

migration to the villus (Fig. 4A) [12,65]. Such repro-

gramming appears to be controlled by a crypt-to-villus

BMP signaling gradient, as in vitro BMP treatment of

human intestinal organoids produces a similar repro-

gramming of hormone peptide profile [65]. It remains

unclear, however, whether all I cells or N cells are

originated from the reprogrammed L cells, and

whether all L cells can undergo such crypt–villus
reprogramming.

In Drosophila, Notch signaling controls binary fate

choice between absorptive and secretory lineages and

also exerts a role in specifying EEC subtypes: Notch

depletion leads to formation of only AstC+ class I

EECs, while specification of Tk+ class II EEC is abro-

gated [74]. As the two daughter EECs produced by

each EEP generally express different peptide hormones

(one is Tk+ and another is AstC+), it is likely that

Notch-mediated lateral inhibition may function at the

EEP stage to mediate specification of the two daughter

cells, leading to adoption of either class I or class II

fate. Apart from the Notch pathway, whether hor-

mone repertoire switching in Drosophila also occurs

during EEC maturation—and whether morphogens

such as BMP or Wnt also modulate regional diversity

of EEC subtypes—remains to be examined.

Enteroendocrine cells carry out chemosensory func-

tions in the GI tract, responding to dietary nutrients

and triggering the production and secretion of gut pep-

tide hormones [1]. And in turn, dietary nutrients can

also modulate specification of certain EEC subtypes

[86]. Several studies have reported that high-fat diets

lead to decreased total EEC numbers in mouse intes-

tine, with especially evident reductions in the number

of L cells; these reductions are accompanied by

reduced levels of circulating gut hormones, which is

caused by downregulation of bHLH TFs known to

function in EEC specification such as Math1/Atoh1,

NEUROD1, and PAX6/PAX4 [87,88]. However,

another study reported increases in the number of L

cells and in the plasma GLP-1 concentration after

8 weeks of high-fat feeding and linked these observa-

tions to Ngn3 activation [89]. In Drosophila, increased

dietary cholesterol leads to reduced Delta expression

and consequently reduced Notch activity, which causes

increased EEC specification from ISCs [90].

Bacteria-derived metabolites have also been reported

to effect EEC diversity [91]. For example, short-chain

fatty acids (SCFAs), bacterial products from the fer-

mentation of dietary fiber, have been shown to

increase the PYY+ cell number and circulating PYY

levels in mouse models, possibly due to histone

deacetylase (HDAC) inhibition [92,93]. In addition,

there is an increase in the number of colonic L cells

and in the plasma GLP-1 level in germ-free mice, and

bacterial colonization rapidly reduced L cell numbers

[94]. It is found that microbiota-derived SCFAs drive

O-GlcNAc transferase (OGT)-mediated FOXO1 O-

GlcNAcylation and inhibited Ngn3 expression, thus

suppressing EEC progenitor specification toward L cell

fate [95]. The gut microbiota also modulates colonic 5-

HT production without altering enterochromaffin cell

specification. This may be triggered by the spore-

forming (Sp) bacteria-associated metabolites including

deoxycholate, a-tocopherol, PABA, and tyramine, or

via fecal microbial single-stranded RNA (ssRNA)-

mediated activation of the Piezo1 receptor [96,97]. The

gut microbiota can also regulate the morphology and

function of EECs. Acinetobacter sp. ZOR0008 in the

GI tract of zebrafish is able to induce changes in EEC

morphology, which cause EECs to become nutrition-

insensitive, a state termed as ‘EEC silencing’ [98].

Collectively, these studies underscore the highly sus-

ceptible nature of EEC identity and hormone reper-

toires to both internal and external regulators; such

flexibility enables adaption to the environment.

Investigation of EEC diversification using

mammal and Drosophila models: conservation

and variance

Model organisms have been extensively used to investi-

gate EEC biology, including mice, Drosophila, as well

as enteroids derived from human gut tissues. Based on

expression profiles and regulatory patterns of EEC

subtypes in different organisms, we can evaluate evolu-

tionary conservation of EEC-expressed peptide hor-

mones and chemosensors, as well as TFs that

modulate EEC subtype specification.

Among them, peptide hormones show less sequence

conservation between Drosophila and mammals,

although they might be functionally similar. Several

sequence-conserved peptide hormones also carry out
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similar biological functions, such as sulfakinins (DSK)

and CCK, both exist in Drosophila and mammals,

respectively, and regulate both satiety and gut empty-

ing [99–101] (Table 3). In contrast, transcriptional reg-

ulators that are involved in EEC subtype specification

generally show more sequence conservation during

evolution. As is shown in Table 4, most TFs that have

been identified to exert regulatory roles on EEC sub-

type specification and/or peptide hormone expression

in mammals have orthologues in Drosophila, and

vice versa. Moreover, among these conserved TFs,

there is evidence for conserved regulatory functions in

mammals and Drosophila. For example, Arx is

required for specification of non-enterochromaffin cell

secretory lineages in mammals, and its orthologue in

Drosophila, Hbn, also carries out a suppressive role on

DH31+ class II EEC specification in the posterior mid-

gut [11,12]. Additionally, the class II specifier TF Mirr

in Drosophila is homologous to the mammalian IRX

family TFs, and IRX3 has been reported as a marker

of TPH1+ enterochromaffin cells, implying a potential

regulatory role for IRX3 in enterochromaffin cell spec-

ification [10,11]. Moreover, EEC subtypes exhibit

regional specificity in both mammalian and the Droso-

phila GI tracts, and the small size of Drosophila mid-

gut enables the investigation of regional identities in a

more discrete manner. Therefore, identification of

regional and class-specific regulators in Drosophila

may provide insights that could deepen understanding

of the local and regional diversity of EECs in the

mammalian GI tract.

EECs mediate intra- and interorgan
communication to modulate multiple
biological processes

The gastrointestinal epithelium represents the largest

surface among different organs to the external environ-

ment. It must acutely sense and broadcast nutritional

status to other organs, recognize, and defend against

pathogenic bacteria, as well as respond to and protect

against injuries to epithelial cells of the GI tract. EECs

are believed to be an important sensor and informa-

tion transmitter in the gut. With recent progress, more

detailed illustrations on signal sensing, peptide secre-

tion, and physiological regulatory cascades and intra-/

interorgan crosstalk mediated by these peptides have

been achieved. In this section of the review, we sum-

marize known functions of EECs in the regulation of

metabolism, gut homeostasis, and crosstalk with ner-

vous system and microbiota, specially focused on the

chemoreceptors present on EEC cell membranes and

on EEC secretion of peptide hormones.

Regulation of metabolic homeostasis

Abundant chemoreceptors on EEC membrane enable

EECs to be stimulated by metabolites and other com-

pounds in the gut lumen [102] (Table 1). In mam-

malian GI tracts, carbohydrates such as simple sugars

are sensed by sodium-glucose transporters (SGLTs),

glucose transporters (GLUTs), and sweet taste recep-

tors (T1R2-T1R3) in enterochromaffin, K, L, and X/A

cells [103–105]. Lipids can be broken down by lipases

and be sensed by free fatty acid receptors (FFARs)

[106,107]; lipid amides are sensed by G protein recep-

tor 119 (GPR119) in enterochromaffin, I, K, and L

cells [108]. Oligopeptides and amino acids produced

from proteins by proteases are sensed and translocated

by proton-coupled oligopeptide transporter (PEPT1),

umami taste receptor (T1R1-T1R3), and different

GPCRs (such as CaSR, GPR142, and GPRC6a, etc.)

in I, K, and L cells [109,110]. Ingestion and sensing of

these dietary metabolites and other compounds (such

as bile acids and bitter compounds) is known to stimu-

late the secretion of a range of gut hormones in the

corresponding EEC subtypes (Table 1); these hor-

mones act on multiple tissues including the GI tract,

pancreas, liver, adipose tissue, and the central nervous

Table 3. Evolutionary conservation of EEC produced hormones

between Drosophila and mammals.

EEC produced

hormone in

Drosophila

Homologue in

mammals

EEC produced

hormone in

mammal

Homologue

in

Drosophila

Tk Tac1 [119,181] SST AstC [182]

NPF Neuropeptide Y

[183,184]

Tac1 Tk

[119,181]

DH31 Calcitonin gene-

related peptide

(CGRP) [185]

Serotonin (5-

HT)

Serotonin

(5-HT)

AstC SST [182] Histamine Histamine

AstA Galanin [101] Gastrin N.D.

CCHa1 N.D. CCK Dsk

[99,100]

CCHa2 N.D. GIP N.D.

Orcokinin N.D. PYY N.D.

MIP N.D. GLP-1 N.D.

Nplp2 N.D. GLP-2 N.D.

Gpb5 Gphb5 [186] Motilin N.D.

ITP N.D. Neurotensin

(NTS)

N.D.

sNPF N.D. Secretin (SCT) N.D.

CCAP N.D. Ghrelin N.D.

Oxyntomodulin

(OXM)

N.D.

Insulin-like

peptide 5

(INSL5)

N.D.
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system (CNS), modulating metabolic homeostasis. For

example, free fatty acids can be sensed by I, K, and L

cells via FFARs expressed at the apical membrane and

stimulated the release of CCK, GIP and GLP-1,

respectively [106,107]. All these three hormones have

the ability to promote digestion, nutrient absorption

[63,64], and satiety [111,112], while GIP can promote

lipid uptake and storage [113], and GLP-1 is able to

regulate bile acid metabolism [114].

Regulation of gut motility and metabolism during

feeding requires crosstalk among gut, liver, and pan-

creas. In general, the participated hormones can be

divided into two types, appetite promoting orexigenic

and appetite suppressing anorexigenic hormones.

During a fasting period, the orexigenic hormones

ghrelin and motilin are increased to inhibit insulin

release and to increase gastric acid secretion, gas-

trointestinal motility, and appetite [115]. 5-HT

increases hepatic gluconeogenesis and glycogenolysis

to maintain glucose homeostasis in the circulatory

system [63,64,102]. INSL5 also helps to induce hunger

and drive feeding behavior [91]. Postprandially,

anorexigenic hormones including CCK, GLP-1, PYY,

SCT, and OXM decrease appetite [111,112,115]; it is

also known that released CCK, GLP-1, GIP, SST,

and PYY slow down gastrointestinal motility to facil-

itate meal digestion and absorption [63,64]. To pro-

mote nutrient absorption, CCK triggers gallbladder

contraction and secretion of pancreatic enzymes

[63,64]. PYY, CCK, SST, and SCT reduce the secre-

tion of gastric acid [112,115]. GLP-1 and GIP pro-

mote thermogenesis and uptake of triacylglycerides in

adipose tissue, and PYY inhibits lipolysis [59,113].

Increased circulatory levels of GLP-1, GIP, CCK,

and 5-HT stimulate insulin secretion from pancreatic

b cells, while GLP-1 and CCK suppress hepatic glu-

cose output, and both of these two processes con-

tribute to the maintenance of glucose homeostasis

[63,64,115–117]. Thus, modulation of gut EEC activi-

ties and peptide hormone secretion with dietary or

pharmacological interventions may point to a poten-

tial treatment for human metabolic disorders, such as

diabetes and obesity.

In Drosophila, gustatory receptors expressed in

EECs to sense luminal contents have been character-

ized and examined for the colocalization with specific

peptide hormones [118]. For example, A transporter

GLUT1, which is the closest Drosophila homolog of

SLC2A2 in mammals, is found to mediate the percep-

tion of dietary sugars in Bursa+ EECs [76]. However,

Table 4. Evolutionary conservation of EEC-regulating TFs between Drosophila and mammals. N.D., not determined.

TF classes

Functionally tested TFs in

mammals

Orthologs in

Drosophila TF classes

Functionally tested TFs in

Drosophila

Orthologs in

mammals

bHLH family Atoh1 Amos bHLH family Sc Ascl1

Zinc finger

C2H2-type

Gfi1 Sens-2 Homeodomain

family

Pros Prox1

bHLH family Ngn3 Tap Iroquois

homeobox

Mirr Irx4/6

HMG domain

family

Sox4 Sox14 Paired-like

homeobox

Ptx1 Pitx2

Paired

homeobox

PAX4 Eyeless bHLH family Fer1 PTF1A

LIM homeobox LMX1a Lmx1a Snail C2H2-type Esg Snai2

Zinc finger

C2H2-type

Myt1 N.D. NK-like

homeobox

NK7.1 N.D.

Runt domain

family

Runx1 Runt Odd-skipped

family

Drm N.D.

HMG domain

family

Tox3 N.D. Nucleoplasmin

family

Nlp Npm3

Paired-like

homeobox

Arx Hbn Zinc finger

C2H2-type

Mamo N.D.

bHLH family neuroD1 N.D. NK-like

homeobox

Exex Mnx1

RFX family Rfx6 Rfx SKI/SNO/DAC

domain

Dac Dach1/2

Forkhead family FOXA1/2 Fkh Zinc finger

C2H2-type

Sug Glis2

Zinc finger Zcchc12 N.D. Paired

homeobox

Poxn PAX family
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most of these gustatory receptors lack the information

of what their ligands are. As for the function of pep-

tide hormones, recent studies have revealed physiologi-

cal roles of EEC-derived Tk and Burs in the

regulation of intestinal lipid metabolism, and CCHa2

in the regulation of appetite. Tk suppresses lipid pro-

duction in enterocytes by targeting the TKR99D

receptor on enterocytes and thereby blocking PKA/

SREBP signaling [119]. The secreted Burs, in response

to nutrients, can bind to the neuronal receptor DLgr2

and restrict energy utilization through the repression

of adipokinetic hormone (AKH)/AKHR signaling in

fat bodies [76]. CCHa2 has been reported to bind its

receptor in the brain [120], while loss of its expression

in EECs and neurons reduced food intake, as well as

leading to delayed larval development [121].

The gut–brain axis

Enteroendocrine cells play an important role in intesti-

nal chemotaxis, coordinating appropriate functional

responses to various stimuli. Some progress has been

made toward understanding the bidirectional communi-

cation between EECs and the brain. For example, Beut-

ler et al. [122] found that nutrients in the gut lumen

inhibited feeding behavior by stimulating the secretion

of three satiety signals: 5-HT, PYY, and CCK. Bucha-

nan et al. (Preprint) [123] and Tan et al. [124] found

that SGLT1 expressed in EECs transduced gut–brain
sugar signals and mediated sugar preference. Some

EECs were also reported to extend basal cytoplasmic

protrusion called neuropods, which might form synaptic

connections with neurons to transmit information from

the gut lumen to the brain [72,125,126]. Although this

structure is supported by anatomical evidence, the study

of functional signaling through these connections is pro-

ceeding slowly. By combining high-throughput quanti-

tative PCR, RNA sequencing, and in situ hybridization,

Egerod et al. [127] described the expression profiles of

all GPCRs in the afferent vagal neurons of mice and

gave particular focus to neurons innervating the GI

tract. The study provided a basis for the investigation

of the communication between intestinal afferent nerves

and EECs and intestinal lumen.

Also, microbiome in the gut lumen can modulate

physiological status of host through gut–brain axis. A

study combining biophysics, genetics, pharmacology,

and cell coculture methods in organoids showed that

enterochromaffin cells can sense microbial metabolites

in the intestinal lumen and regulate the release of 5-

HT to directly communicate with neurons through

synaptic interactions [7]. Microbial metabolites and

other derivatives produced by food fermentation (e.g.,

SCFAs and bile acids) can impact intestinal peptide

hormone secretion from EECs and through the micro-

biota–gut–brain axis, affect the nervous system, and

regulate the host metabolism [96,97,128,129]. There is

also evidence that microbiota composition is closely

associated with many psychiatric disorders such as

anxiety and depression, autism spectrum and neurode-

generative diseases including Parkinson’s disease and

Alzheimer’s disease [130–132].
Communication through the gut–brain axis—based

on EECs—has also been demonstrated in adult Droso-

phila. Chen et al. [133] found that specific activation of

AstA expressing PLP peptidergic neurons and EECs

reduces food intake as well as promotes sleep. Ren

et al. [121] found that ccha2 null mutant flies exhibit

reduced food intake. Release of peptide hormones

from EECs also contributes to postmating remodeling

of food intake and reproductive capacity through gut–
brain axis. Release of NPF and increase of Burs+

EECs are observed in female flies after mating in

response to the seminal-fluid protein sex peptide (SP).

NPF promotes germline stem cell proliferation via

ovarian NPFR activity, while Burs promotes food

intake via Burs receptor Rickets (Rk, also called

dLgr2) expressed in gut innervating myosuppressin

(Ms) neurons via regulating crop enlargement

[134,135].

It is worth noting that, since almost all peptide hor-

mones secreted by EECs in Drosophila intestine also

function as neuropeptide transmitters in the brain, dis-

tinguishing between these two sources of hormones

when studying the mechanism of gut–brain communi-

cation should be carefully considered.

Regulation of intestinal epithelial homeostasis

Homeostasis in the intestinal epithelium is maintained

by ISCs in both Drosophila and mammals. In mam-

mals, niche signals from epithelium cells (such as

Paneth cells) and nonepithelium cells (such as mes-

enchymal cells) have been intensively investigated for

their roles in regulating ISC self-renewal and intestinal

homeostasis [136], while EECs also play a regulatory

role on ISCs. In mice, GLP-2 can promote regenera-

tion of Paneth cells and ISCs in crypts, which facili-

tates the preservation and regeneration of the

damaged intestinal epithelium [137]. A subset of post-

mitotic, chromogranin A+ (ChgA) EECs appears to

have stem cell potential as these cells are located at the

crypt of the mouse small intestine and express stem

cell markers Lgr5 [138]. Indeed, ChgA+ EECs with

high levels of Sox9 expression exhibit regenerative

capacity following irradiation [139,140]. Consistent
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with these observations, another study demonstrates

that a subset of EECs is able to dedifferentiate into

‘reserve ISCs’ in response to radiation-induced injury

[141].

A relationship between EECs and gastrointestinal

cancers has also been implicated. EECs are observed in

some primary colorectal cancers, and a worse prognosis

is correlated with increased enterochromaffin cell differ-

entiation [142]. These EECs are ChgA+, 5-HT+, or

synaptophysin+, and a subset of the ChgA+ cell in nor-

mal human small intestinal and colonic crypts has been

found to specifically express Brachyury, a putative onco-

gene, raising a possibility that they could act as reserve

stem cells [143]. In N-nitroso-methylurea (MNU)-treated

stomach, a decrease in the number of gastrin-expressing

G cells helps switch of Cck2r+ antral stem cells from

predominant asymmetric division to symmetric division,

thereby promoting tumorigenesis [15].

In Drosophila, EECs can also regulate ISCs by

secreting peptide hormones as regulatory signals. Burs,

secreted from EECs as a paracrine signal, binds to its

receptor DLGR2 on visceral muscles to suppress Vn/

EGF expression through cAMP signaling and finally

maintains the quiescence of ISCs [144]. Another gut

hormone Tk, secreted by EECs upon reception of

high-nutrient diet, can induce the expression of an

insulin-like peptide DILP3 in the visceral muscle,

which functions as a paracrine signal for the adaptive

ISC proliferation and intestinal growth [145].

Disorders related to EEC dysfunction
and pharmacological implications

Although EECs in the GI tract can regulate various

biological processes, few clinical or basic studies have

clearly defined their specific etiological impacts in gas-

trointestinal and other diseases, perhaps due to their

very low number among the total gastrointestinal

epithelial cell population [13]. It could be argued that

the most relevant pathological disorders related to

EEC dysfunction may be obesity and diabetes. Levels

of fasting PYY and postglucose GLP-1 are downregu-

lated in obese individuals, while incretins (e.g., GLP-1

and GIP) are decreased in type II diabetes mellitus

(T2DM), leading to an abolished incretin effect that is

now understood as a very early and specific feature of

T2DM [146,147]. However, to date, no causal relation-

ships have been demonstrated between T2DM and

incretin defects. The hormone GLP-1 is necessary for

normal glucose-regulation, and it is produced by both

intestinal L cells and a-cells in pancreases islet, despite

a relatively low level in the latter [148]. GLP-1 from

both of these two sources has been demonstrated to be

essential for regulating glucose homeostasis in mice

models [149,150]. In new-onset type 2 diabetes

patients, an increase in GLP-1-producing L-cell num-

ber could be observed, while GIP-producing K cell is

not significantly altered [151]. An increased dose of

this hormone can restore glucose-induced insulin secre-

tion, a response that has been harnessed as the basis

for the therapeutic use of GLP-1 receptor agonists to

treat T2DM [152]. Combinational utilization of engi-

neered stable GLP-1 agonists and inhibitors of dipep-

tidyl peptidase 4 (DPP4), a component which rapidly

inactivates circulating GLP-1, has been licensed for

clinical treatment of T2DM; the addition of basal

insulin treatment or GIP agonists may further enhance

the therapeutic activities of GLP-1 agonists [153–155].
Meanwhile, additional benefits such as weight loss and

cardio protection can also be achieved with GLP-1

agonist treatment. Further pharmacological investiga-

tions targeting chemosensory receptors including

FFAR1, GPR119, and GPR120 are currently under-

way, aiming to achieve a more systematic modulation

of hormone production for the cure of metabolic dis-

orders [156].

Another pathological disorder which may be

impacted by EEC dysfunction is inflammatory bowel

disease (IBD) [13]. GLP-2 produced by L cells

enhances tight-junction integrity and decreases intesti-

nal permeability; it also protects against oxidative

stress, apoptosis, and cell cycle arrest induced by

TNFa, a pro-inflammatory cytokine involved in IBD

pathogenesis [157,158]. Based on the ob/ob mouse

model, treatment of prebiotic like Bifidobacterium spp

increases endogenous GLP-2 production, alleviating

immunological disorders, suggesting the potential util-

ity of prebiotics for the treatment of inflammation

[159]. Enterochromaffin cell hyperplasia and increased

5-HT bioavailability in the gut are also associated with

symptom generation in IBD and irritable bowel syn-

drome (IBS) [96,160,161]. Thus, targeting enterochro-

maffin cell specification and 5-HT production might be

a promising therapeutic strategy for these disorders,

possibly via microbiota transplantation, given that gut

microbiome-derived ssRNA or metabolites produced

by Sp bacteria species have been reported to regulate

5-HT production [96,97].

Concluding remarks and perspectives

Extensive studies with multiple model organisms and

recent technological advances have helped in clearly

describing EEC diversity. As techniques for establishing

and maintaining the biological functions of specific EEC

lineages become increasingly available, it will be possible
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to conduct characterization and regulatory network stud-

ies at a subtype-specific level. This will almost certainly

open a series of exciting research directions in EEC biol-

ogy and beyond. Manipulating gene expression in speci-

fic EEC subtypes could be achieved using specific

drivers, thus promoting our capacity to experimentally

characterize their specific functions. Another important

point is likely to be the definition of the full spectrum of

the regulatory networks controlling EEC subtype specifi-

cation and peptide hormone expression. Large numbers

of TFs have been identified to exhibit subtype-specific

expression patterns, potentially functioning in regulating

specification of these EEC subtypes. Functionally, EECs

carry out important roles in signal transduction between

the host and the intestinal lumen contents, including the

gut microbiome and their derivatives. How distinct EEC

subtypes sense and respond to these variable stimuli and

mediate the microbiota–gut–brain axis? Revealing nodes

including ligand-GPCR receptor interactions, as well as

crosstalk between EECs and surrounding vagus nerves,

would bring insight to these questions. Based on the

accumulation of scRNA-seq datasets of different organs,

systematic illustration of interorgan crosstalk via ligand-

receptor signaling between EECs with pancreases, liver,

muscle, and adipose tissues could be achieved, pushing

forward understanding of EEC-mediated endocrine mod-

ulation of systematic metabolism. Moreover, under stress

conditions such as chronic inflammation or tumorigene-

sis, how specification of distinct EEC subtypes and their

hormone production activities are affected? And, con-

versely, how do these altered EECs and peptide hor-

mones affect the progression of disease states?

Model systems could be powerful tools to answer

these questions. For example, given that zebrafish are

amenable for performing live image and real-time moni-

toring of EEC activity or hormone secretion, this spe-

cies may serve as an informative model to clarify how

particular EEC subtypes respond to particular stimuli

[98,162]. Organoid cultures combined with large-scale

CRISPA/Cas9 screening enable systematic investiga-

tions of how TFs control EEC subtypes specification.

And in addition to these model organisms, more clinical

sample-based investigations with distinct disease also

needs to be carried out, in order to reveal inner associa-

tions between human diseases and EEC dysfunctions.

Regarding the potential therapeutic exploitation of

these basic discoveries and mechanistic insights, pre-

sently active applied research areas for potential treat-

ment of immunological or metabolic disorders include

modulation of EEC subtype specification, targeting of

various chemosensors, and using endocrine hormone

agonists/antagonists such as GLP-1 agonist to treat

T2DM. Further studies, including basic investigations

with model organisms and patient cohort-based clini-

cal studies, focusing on elucidating the causal relation-

ships between EECs and the etiology of several highly

prevalent human disorders seem very likely to greatly

expand our understanding of EEC biology and pro-

mote development of effective precision treatments.
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